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Abstract – This paper deals fractional order Proportional-Integral-Derivative (fractional order PID) controller used in a 
high performance drilling system for controlling the output obtained. The main objective is to obtain a stable, robust 
and controlled system by tuning the fractional order PID controller using minimization. The incurred value is compared 
with the traditional tuning techniques like Ziegler-Nichols and is proved better. Hence that tuning results establishes the 
tuning the fractional order PID controller using minimization technique gives less overshoot and better control 
performance. 
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1. Introduction  
 

PID control is a generic feedback control technology 
and it makes up 90% of automatic controllers in 
industrial control systems. The PID control was first 
placed in the market in 1939 and has remained the most 
widely used controller in process control until today. The 
basic function of the controller is to execute an algorithm 
based on the control engineers input and hence to 
maintain the output at a level so that there is no 
difference between the process variable and the set point 
[1]. The popularity of PID controllers is due to their 
functional simplicity and reliability .They provide robust 
and reliable performance for most systems and the PID 
parameters are tuned to ensure a satisfactory closed loop 
performance [2]. A PID controller improves the transient 
response of a system by reducing the overshoot and by 
shortening the settling time of a system [3]. 

Standard methods for integer order tuning includes 
Ziegler-Nichols Ultimate-cycle tuning [4], Cohen-coons 
[6], Astrom and Hagglund [5] and many other techniques. 
In this paper we design fractional order PID controller for 
a High performance drilling machine. Fractional order 
PID controllers are variations of usual PID controllers: 
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where the (first-order) integral and the (first-order) 
derivative of (1) are replaced by fractional derivatives 
like this: 
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(In principle, bothλ  and µ  should be positive so that we 
still have an integration and a differentiation.) Fractional 
order PIDs have been increasingly used over the last 
years [7]. There are several analytical ways to tune them 

[8, 9, 10]. This paper is organized as follows: Section 2 
describes dynamic model of a high-performance drilling 
process. Section3 introduces the fractional order calculus. 

Section4 describes an analytical method that lies 
behind the development of the rules. Sections5 and 6 
describes tuning rules similar to those proposed by 
Ziegler and Nichols for (integer) PIDs. Section 7 
describes fractional order PID controller design for 
drilling Machines using tuning rules. Finally results and 
comparison in the section 8  

 
2. Dynamic model of a high-performance 
drilling process   
 

The modeling of a high-performance drilling process 
[11] includes the modeling of the feed drive system, the 
spindle system and the cutting process. In this paper, the 
overall plant model is obtained by experimental 
identification using different step shaped disturbances in 
the command feed. The drilling force, F, is proportional 
to the machining feed, and the corresponding gain varies 
according to the work piece and drill diameter. The 
overall system of the feed drive, cutting process and 
dynamometric platform was modeled as a third-order 
system, and the experimental identification procedure 
yielded the transfer function as:  
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where s is the Laplace operator. The model does have 
certain limits in representing the complexity and 
uncertainty of the drilling process. However, it provides a 
rough description of the process behavior that is essential 
for designing a network- based PID control system. 
 
3. A brief introduction to fractional order 
calculus 
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A commonly used definition of the fractional differo-
integral is the Riemann-Liouville definition 
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For 1m mα−   ; where, )0(Γ  is the well-
known Euler,s gamma function. An alternative definition, 
based on the concept of fractional differentiation, is the 
Grunwald-Letnikov definition given by 
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One can observe that by introducing the notion of 
fractional order operator ( )a tD f tα  the differentiator 
and integrator can be unified. Another useful tool is the 
Laplace transform. It is shown in [12] that the Laplace 

transform of an n-th derivative )( +∈Rn of a signal x(t) 

relaxed at t=0 is given by: { }( ) ( )n nL D x t s x s=  So, 

a fractional order differential equation, provided both the 
signals u(t) and y(t) are relaxed at 0t = , can be 
expressed in a transfer function form: 
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Where 2 2( , ) , ( , ) , ( )m m m ma b R R m Nα β +∈ ∈ ∀ ∈  

 
4. Tuning by minimization 

 
In this tuning method for fractional PIDs by [13], we 

begin by devising a desirable behavior for our controlled 
system, described by five specifications (five, because the 
parameters to be tuned are five): 

1. The open loop is to have some specified crossover 
frequency cgw : 

dbwGwC cgcg 0)()( =                     (7) 

2. The phase margin mϕ is to have some specified 
value: 

)]()(arg[ cgcgm wGwc=+− φπ             (8) 

3. To reject high-frequency noise, the closed loop 
transfer function must have a small magnitude at high 
frequencies; hence, at some specified frequency hw , its 
magnitude is to be less than some specified gain H: 
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4. To reject output disturbances and closely follow 
references, the sensitivity function must have a small 
magnitude at low frequencies; hence, at some specified 
frequency lW , its magnitude is to be less than some 
specified gain N: 

1
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 5. To be robust when gain variations of the plant 
occur, the phase of the open loop transfer function is to 
be (at least roughly) constant around the gain-crossover 
frequency: 
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Then the five parameters of the Fractional PID are to 
be chosen using the Nelder-Mead direct search simplex 
minimization method. This derivative free method is used 
to minimize the difference between the desired 
performance specified as above and the performance 
achieved by the controller. Of course this allows for local 
minima to be found: so it is always good to use several 
initial guesses and check all results (also because 
sometimes unfeasible solutions are found). 
 
5. The set of s-shaped response based tuning 
rules 
 

The set of rules proposed by Ziegler and Nichols 
apply to systems with an S- shaped unit-step response, 
such as the one seen in Fig 1. From the response an 
apparent delay L and a characteristic time – constant T 
may be determined (graphically, for instance). A simple 
plant with such a response is 
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The specifications used were     

 

                       

 

 

  

 

 

Matlab,s implementation of the simplex search in 
function fmincon was used (7) was considered the 
function to minimize, and (8) to (11) accounted for as 
constraints. 

Obtained parameters DIP ,,, λ and µ  very 
regularly with L and T. using a least-squares fit, it was 
possible to adjust a polynomial to the data, allowing 
(approximate) values for the parameters to be found from 
a simple algebraic calculation [14.15]. The parameters of 
the polynomials involved are given in Table 1. This 
means that  
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And so on. These rules may be used if 

 

2501.0 ≤≤≤ andLT                (20)                
   
 

 
 

 
Table 1. Parameters for the first set of tuning rules for S-shaped 

response plants 

 
 
6. The set of critical gain based tuning rules 
 

The second set of rules proposed by Ziegler and 
Nichols apply to systems that, inserted into a feedback 
control-loop with proportional gain, show, for a particular 
gain, sustained oscillations, that is, oscillations that do 
not decrease or increase with time, as shown in Fig1. The 
period of such oscillations is the critical period crP , and 

the gain causing them is the critical gain crK . Plants 
given by (12) have such a behavior. Reusing the data 
collected for finding the rules in section 5, obtained with 
specifications (13) to (18), it is seen that parameters 

, , ,P I Dλ and µ  obtained vary regularly with crK  and 

crP  .The regularity was again translated into formulas 
(which are no longer polynomial) using a least- squares 
fit [16]. The parameters involved are given in Table 2. 
This means that  
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And so on. These rules may be used if  
 

6408 ≤≤ crcrcr pandKP              (22) 
 
 

Table 2. Parameters for the first set of tuning rules for plants with 
critical gain and period 

 

 
7. Fractional PID controller design for 
drilling machine           
 

The model of the drilling machine is a third-order 
transfer function as: 
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The unit –step responses of the Drilling machine model is 
selected in Fig 2.To design on fractional PID controller, 
the model(23) should be approximated by a first order lag 
plus time delay system which is give in the following 
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Then using tuning rules in the paper, obtained parameters 
and p, I, λ , D and µ :  
 

P=0.2079, I= 0.4969, λ =1.4883, D= 0.08965, 

µ =0.9694 

 
The transfer function for the fractional PID controller is: 

9694.0
4883.1 08965.04969.02079.0)( s

s
sc ++=      (25) 
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The unit-step responses of the Drilling machine with 
fractional PID controller and integer PID controller are 
shown in Fig3 
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Fig2. Unit step response of drilling machine 
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Fig3. Unit-step responses of the Drilling machine with Fractional PID 

controller and Integer PID controller 
 

8. Results and conclusion  
 
Using fractional order PID controller we have 

significantly reduced percentage overshoot and rise time 
and settling time. A comparison of time domain 
specifications peak overshoot, peak time ,rise time and 
settling time are tabulated as given in Table 3.It is found 
very clearly that fractional order PID controller reduce 
the overshoot by a large value. Settling time, rise time 
and peak time have also improved. 

In this paper tuning rules (inspired by those proposed 
by Ziegler and Nichols for integer PID s) are given to 
tune Fractional PID s. Two different sets of fixed 
performance specifications are used.  

 
Table 3. comparison 

Type of controller Integer(z-n) Fractional 

Peak time (sec) 0.37 0.31 

Peak overshoot (%) 42.3 23.7 

Rise time (sec) 0.15 0.11 

Settling time (sec) 1.61 1.3 
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